

acniti LLC 1-2-9 Nyoidani Minoh Osaka 〒562-0011 Japan

oxidímetro subacuático

Descubre el avanzado Oxidímetro subacuático diseñado para medir con rapidez y precisión oxidantes como el cloro y el ozono en agua salada o salobre, sin necesidad de reactivos. Su innovadora tecnología de autolimpieza y de tres electrodos garantiza un rendimiento altamente fiable, incluso en entornos marinos difíciles. Descubre cómo este instrumento robusto y fácil de mantener establece un nuevo estándar para el control de la calidad del agua en aplicaciones industriales, medioambientales y de investigación.

oxidímetro subacuático

oxidímetro subacuático

- Medición sin reactivos No se necesitan productos químicos
- Limpieza automática de electrodos
- Mediciones rápidas en 1 minuto
- Adecuado para diversas condiciones del agua
- No se desperdicia agua

Resumen

- Resistente a entornos difíciles
- Fácil integración en los sistemas existentes
- Adecuado para diversas aplicaciones
- Montaje en pared (y posibilidad de montaje en tubo)

¿qué hace un oxidímetro subacuático?

El Medidor Subacuático de Oxidantes es un instrumento de medición avanzado que detecta oxidantes en agua salada y salobre sin necesidad de reactivos. Gracias a la voltamperometría de impulsos de potencial con tres electrodos, este medidor proporciona mediciones rápidas y precisas y sigue siendo fiable gracias a un innovador sistema de autolimpieza.

No hay que confundir un medidor de oxidante subacuático con un medidor de ORP / Redox. Consulta la descripción general de la tecnología:

tecnológico	Oxidímetro subacuático	Medidor Redox
Principio de medición	Voltamperometría de impulsos de potencial (VPP) con tres electrodos	Diferencia de potencial electroquímico entre dos electrodos
Objetivo	Medición directa de oxidantes (por ejemplo, cloro, ozono, H ₂ O ₂)	Potencial general de oxidación- reducción (efecto combinado de todas las especies redox)
Reactivos necesarios	No se necesitan reactivos	Sin reactivos, pero lectura indirecta
Calibración	Normalmente menos frecuente debido al diseño estable	Necesita calibración periódica para mayor precisión
Diseñado para agua salada / salobre	Sí, optimizado para entornos marinos	▲ Puede verse afectado por la alta fuerza iónica y la bioincrustación
Resistencia a las incrustaciones	El sistema de autolimpieza ayuda a evitar la bioincrustación	Propensa a las incrustaciones, requiere mantenimiento regular
Clasificación de profundidad	Sumergible y resistente	▲ Inmersión limitada, no siempre a presión

Resumen tecnológico	Oxidímetro subacuático	Medidor Redox
Tiempo de	۶ Rápido, detección en	De moderado a lento, se estabiliza
respuesta	tiempo real	con el tiempo
Selectividad	Alta - puede distinguir entre oxidantes	Baja - sólo da un estado redox general
Estabilidad en el tiempo	Excelente con tecnología de impulsos	Puede derivar, afectado por la contaminación o el revestimiento de la sonda

¿por qué un oxímetro subacuático?

En diversas aplicaciones industriales y medioambientales, es esencial controlar la presencia de oxidantes en el agua. El Medidor Subacuático de Oxidantes te permite controlar los parámetros de calidad del agua, con lo que puedes

- Evitar el consumo innecesario de agua
- Trabaja de forma sostenible y respetuosa con el medio ambiente, sin reactivos químicos
- Ahorra costes de mantenimiento gracias a la limpieza automática

aplicaciones del medidor subacuático de oxidantes.

El Medidor Subacuático de Oxidantes se utiliza en diversas industrias y aplicaciones. Cuando busques la calidad general del agua o tengas un presupuesto limitado, considera un medidor de ORP. Aplicaciones perfectas para el Medidor Subacuático de Oxidantes:

- Plantas de tratamiento de aguas Optimizar los procesos de desinfección.
- Acuicultura en agua de mar
- Controlpreciso de oxidantes (por ejemplo, dosificación de ozono)
- Esterilización del agua de mar en la pesca Garantizar un entorno limpio para la acuicultura
- Tratamiento de aguas residuales en fábricas Cumplir las normas medioambientales
- Piscinas y balnearios Mantener una calidad del agua segura
- Suministro de agua potable y gestión de aguas residuales Evitar la contaminación
- Procesos industriales Controlar las reacciones químicas relacionadas con la oxidación

especificaciones

Característica	Detalles
Propósito de la medición	Oxidantes en agua de mar y salobre
Principio de medición	Voltamperometría de impulsos de potencial de tres electrodos
Método de medición	Sistema de microelectrodos con perlas autolimpiables
Rango de medición	0-2,00 mg/L (Estándar) - Opcional: 1,00/3,00/5,00 mg/L
Repetibilidad	±5% del fondo de escala más un dígito

Característica **Detalles** 1 minuto (90% de respuesta) Tiempo de respuesta Compensación de temperaturaCompensación automática con un termistor Intervalo de pH: 5,8-8,6 (variación dentro de ±0,5 (Ha Conductividad: ≥10 mS/m (variación dentro de ±10 Condiciones mS/m) Temperatura del agua: 0 - 45°C (sin congelación) Temperatura ambiente: -10 - 45°C **Humedad:** ≤90% HR (sin condensación) Montaje en pared (Opcional: montaje en tubo con kit Instalación de pernos en U) Resolución 0,01 mg/L DC 4- 20mA (Aislada, carga máxima 500Ω) Señal de salida Alarmas de límite superior e inferior (1a cada una) Salidas de alarma Rango aiustable - ±10% del fondo de escala Salida de control - ±5% de la escala total - ±2,5% de la escala total

Alimentación eléctrica CA 100-240V (±10% variación) 50/60Hz Resistencia a la presión 0,5 MPa

1. Soporte de tubo de acero inoxidable (1500 mm de longitud)

2. Kit de fijación para tubo (50A)

Accesorios opcionales 3. Caja de conexiones (prolongación del cable del

sensor).

4. Cable alargador específico (disponible en

longitudes de 10 m).

eoxi-40

	Descripción	Métrico	Imperial
1	Nombre del modelo	EOXI-40	EOXI-40
2	Número de modelo	EOXI-40	EOXI-40
	Liquido	Métrico	Imperial
3	Disponibilidad y tamaño del colador		
	Gas	Métrico	Imperial
4	Calidad del gas		
5	Observación de gas		
	Conexiones	Métrico	Imperial
6	entrada de agua		
	salida de agua		
7	salida de agua		